Revealing the Structure and Composition of the Restored Vegetation Cover in Semi-Arid Mine Dumps Based on LiDAR and Hyperspectral Images

Author:

Tang Jiajia,Liang Jie,Yang Yongjun,Zhang ShaoliangORCID,Hou Huping,Zhu XiaoxiaoORCID

Abstract

Remotely sensed images with low resolution can be effectively used for the large-area monitoring of vegetation restoration, but are unsuitable for accurate small-area monitoring. This limits researchers’ ability to study the composition of vegetation species and the biodiversity and ecosystem functions after ecological restoration. Therefore, this study uses LiDAR and hyperspectral data, develops a hierarchical classification method for classifying vegetation based on LiDAR technology, decision tree and a random forest classifier, and applies it to the eastern waste dump of the Heidaigou mining area in Inner Mongolia, China, which has been restored for around 15 years, to verify the effectiveness of the method. The results were as follows. (1) The intensity, height, and echo characteristics of LiDAR point cloud data and the spectral, vegetation indices, and texture features of hyperspectral image data effectively reflected the differences in vegetation species composition. (2) Vegetation indices had the highest contribution rate to the classification of vegetation species composition types, followed by height, while spectral data alone had a lower contribution rate. Therefore, it was necessary to screen the features of LiDAR and hyperspectral data before classifying vegetation. (3) The hierarchical classification method effectively distinguished the differences between trees (Populus spp., Pinus tabuliformis, Hippophae sp. (arbor), and Robinia pseudoacacia), shrubs (Amorpha fruticosa, Caragana microphylla + Hippophae sp. (shrub)), and grass species, with classification accuracy of 87.45% and a Kappa coefficient of 0.79, which was nearly 43% higher than an unsupervised classification and 10.7–22.7% higher than other supervised classification methods. In conclusion, the fusion of LiDAR and hyperspectral data can accurately and reliably estimate and classify vegetation structural parameters, and reveal the type, quantity, and diversity of vegetation, thus providing a sufficient basis for the assessment and improvement of vegetation after restoration.

Funder

Yong jun Yang

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3