Enhancing Deep Learning-Based Segmentation Accuracy through Intensity Rendering and 3D Point Interpolation Techniques to Mitigate Sensor Variability

Author:

Kim Myeong-Jun1ORCID,Kim Suyeon2,Lee Banghyon2,Kim Jungha3

Affiliation:

1. Graduate School of Automotive Engineering, Kookmin University, Seoul 02707, Republic of Korea

2. Moovita Pte Ltd., Block 44, 535 Clementi Rd., Singapore 599489, Singapore

3. Department of Automotive and IT Convergence, Kookmin University, Seoul 02707, Republic of Korea

Abstract

In the context of LiDAR sensor-based autonomous vehicles, segmentation networks play a crucial role in accurately identifying and classifying objects. However, discrepancies between the types of LiDAR sensors used for training the network and those deployed in real-world driving environments can lead to performance degradation due to differences in the input tensor attributes, such as x, y, and z coordinates, and intensity. To address this issue, we propose novel intensity rendering and data interpolation techniques. Our study evaluates the effectiveness of these methods by applying them to object tracking in real-world scenarios. The proposed solutions aim to harmonize the differences between sensor data, thereby enhancing the performance and reliability of deep learning networks for autonomous vehicle perception systems. Additionally, our algorithms prevent performance degradation, even when different types of sensors are used for the training data and real-world applications. This approach allows for the use of publicly available open datasets without the need to spend extensive time on dataset construction and annotation using the actual sensors deployed, thus significantly saving time and resources. When applying the proposed methods, we observed an approximate 20% improvement in mIoU performance compared to scenarios without these enhancements.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3