Ultrasound-Assisted Surface Modification of MWCNT Using Organic Acids

Author:

de León-Martínez Patricia A.ORCID,Sáenz-Galindo AidéORCID,Ávila-Orta Carlos A.ORCID,Castañeda-Facio Adalí O.,Andrade-Guel Marlene L.,Sierra Uriel,Alvarado-Tenorio German,Bernal-Martínez JuanORCID

Abstract

In the present work, multiple-wall carbon nanotubes (MWCNTs) were surface modified in an environmentally friendly way, using low-frequency ultrasonic energy. This type of modification was carried-out using two different types of organic acids, citric acid (CA) and oxalic acid (OA). The modification of the MWCNTs was confirmed by Fourier-transform infrared spectroscopy (FTIR), where functional groups such as OH, C=O, O–C=O and COOH were detected. By means of Raman spectroscopy, an increase in carbon surface defects was found. On the other hand, using X-ray photoelectron spectroscopy (XPS), oxidation was evidenced on the surface of the modified MWCNT. In both Raman spectroscopy and XPS, the results indicate a greater modification when CA is used, possibly due to the fact that CA has a larger number of functional groups. MWCNT-CA showed good dispersion in methanol, while MWCNT-OA showed good stability in methanol and ethanol. Finally, a 20% removal of creatinine efficiency improvement was found with respect to the unmodified MWCNTs, while no improvement was found in the case of urea and uric acid.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3