Influence of the β− Radiation/Cold Atmospheric-Pressure Plasma Surface Modification on the Adhesive Bonding of Polyolefins

Author:

Bednarik MartinORCID,Mizera AlesORCID,Manas Miroslav,Navratil Milan,Huba Jakub,Achbergerova Eva,Stoklasek Pavel

Abstract

The goal of this research was to examine the effect of two surface modification methods, i.e., radiation cross-linking and plasma treatment, on the adhesive properties and the final quality of adhesive bonds of polypropylene (PP), which was chosen as the representative of the polyolefin group. Polymer cross-linking was induced by beta (accelerated electrons—β−) radiation in the following dosages: 33, 66, and 99 kGy. In order to determine the usability of β− radiation for these applications (improving the adhesive properties and adhesiveness of surface layers), the obtained results were compared with values measured on surfaces treated by cold atmospheric-pressure plasma with outputs 2.4, 4, and 8 W. The effects of both methods were compared by several parameters, namely wetting contact angles, free surface energy, and overall strength of adhesive bonds. Furthermore, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were conducted. According to our findings the following conclusion was reached; both tested surface modification methods significantly altered the properties of the specimen’s surface layer, which led to improved wetting, free surface energy, and bond adhesion. Following the β− radiation, the free surface energy of PP rose by 80%, while the strength of the bond grew in some cases by 290% in comparison with the non-treated surface. These results show that when compared with cold plasma treatment the beta radiation appears to be an effective tool capable of improving the adhesive properties and adhesiveness of PP surface layers.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3