Abstract
The required precision for attitude determination in spacecraft is increasing, providing a need for more accurate attitude determination sensors. The star sensor or star tracker provides unmatched arc-second precision and with the rise of micro satellites these sensors are becoming smaller, faster and more efficient. The most critical component in the star sensor system is the lost-in-space star identification algorithm which identifies stars in a scene without a priori attitude information. In this paper, we present an efficient lost-in-space star identification algorithm using a neural network and a robust and novel feature extraction method. Since a neural network implicitly stores the patterns associated with a guide star, a database lookup is eliminated from the matching process. The search time is therefore not influenced by the number of patterns stored in the network, making it constant (O(1)). This search time is unrivalled by other star identification algorithms. The presented algorithm provides excellent performance in a simple and lightweight design, making neural networks the preferred choice for star identification algorithms.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献