The First Analysis of Synaptonemal Complexes in Jawless Vertebrates: Chromosome Synapsis and Transcription Reactivation at Meiotic Prophase I in the Lamprey Lampetra fluviatilis (Petromyzontiformes, Cyclostomata)

Author:

Matveevsky Sergey1ORCID,Tropin Nikolay2ORCID,Kucheryavyy Aleksandr3ORCID,Kolomiets Oxana1

Affiliation:

1. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia

2. Vologda Branch of the Russian Federal Research Institute of Fisheries and Oceanography, 160012 Vologda, Russia

3. Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia

Abstract

Transcription is known to be substage-specific in meiotic prophase I. If transcription is reactivated in the mid pachytene stage in mammals when synapsis is completed, then this process is observed in the zygotene stage in insects. The process of transcriptional reactivation has been studied in a small number of different taxa of invertebrates and vertebrates. Here, for the first time, we investigate synapsis and transcription in prophase I in the European river lamprey Lampetra fluviatilis (Petromyzontiformes, Cyclostomata), which is representative of jawless vertebrates that diverged from the main branch of vertebrates between 535 and 462 million years ago. We found that not all chromosomes complete synapsis in telomeric regions. Rounded structures were detected in chromatin and in some synaptonemal complexes, but their nature could not be determined conclusively. An analysis of RNA polymerase II distribution led to the conclusion that transcriptional reactivation in lamprey prophase I is not associated with the completion of chromosome synapsis. Monomethylated histone H3K4 is localized in meiotic chromatin throughout prophase I, and this pattern has not been previously detected in animals. Thus, the findings made it possible to identify synaptic and epigenetic patterns specific to this group and to expand knowledge about chromatin epigenetics in prophase I.

Funder

VIGG RAS State Assignment Contracts

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference56 articles.

1. Bogdanov, Y.F., and Kolomiets, O.L. (2007). Synaptonemal Complex as an Indicator of the Dynamics of Meiosis and Chromosome Variation, KMK Press.

2. Conservation and variability of meiosis across the eukaryotes;Loidl;Annu. Rev. Genet.,2016

3. Attenuated chromatin compartmentalization in meiosis and its maturation in sperm development;Alavattam;Nat. Struct. Mol. Biol.,2019

4. Nuclear architecture of mouse spermatocytes: Chromosome topology, heterochromatin, and nucleolus;Berrios;Cytogent. Genome Res.,2017

5. The nuclear envelope, a meiotic jack-of-all-trades;Zetka;Cur. Opin. Cell Biol.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3