Different Leaf Anatomical Responses to Water Deficit in Maize and Soybean

Author:

Mano Noel AnthonyORCID,Madore Bethany,Mickelbart Michael V.ORCID

Abstract

The stomata on leaf surfaces control gas exchange and water loss, closing during dry periods to conserve water. The distribution and size of stomatal complexes is determined by epidermal cell differentiation and expansion during leaf growth. Regulation of these processes in response to water deficit may result in stomatal anatomical plasticity as part of the plant acclimation to drought. We quantified the leaf anatomical plasticity under water-deficit conditions in maize and soybean over two experiments. Both species produced smaller leaves in response to the water deficit, partly due to the reductions in the stomata and pavement cell size, although this response was greater in soybean, which also produced thicker leaves under severe stress, whereas the maize leaf thickness did not change. The stomata and pavement cells were smaller with the reduced water availability in both species, resulting in higher stomatal densities. Stomatal development (measured as stomatal index, SI) was suppressed in both species at the lowest water availability, but to a greater extent in maize than in soybean. The result of these responses is that in maize leaves, the stomatal area fraction (fgc) was consistently reduced in the plants grown under severe but not moderate water deficit, whereas the fgc did not decrease in the water-stressed soybean leaves. The water deficit resulted in the reduced expression of one of two (maize) or three (soybean) SPEECHLESS orthologs, and the expression patterns were correlated with SI. The vein density (VD) increased in both species in response to the water deficit, although the effect was greater in soybean. This study establishes a mechanism of stomatal development plasticity that can be applied to other species and genotypes to develop or investigate stomatal development plasticity.

Funder

Center for Plant Biology Assistantship

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3