Structural, Electromagnetic and Microwave Properties of Magnetite Extracted from Mill Scale Waste via Conventional Ball Milling and Mechanical Alloying Techniques

Author:

Elmahaishi Madiha Fathi,Azis Raba’ah SyahidahORCID,Ismail IsmayadiORCID,Mustaffa Muhammad Syazwan,Abbas Zulkifly,Matori Khamirul Amin,Muhammad Farah Diana,Saat Nor Kamilah,Nazlan RodziahORCID,Ibrahim Idza Riati,Abdullah Nor Hapishah,Mokhtar Nurhidayaty

Abstract

This study presents the utilization of mill scale waste, which has attracted much attention due to its high content of magnetite (Fe3O4). This work focuses on the extraction of Fe3O4 from mill scale waste via magnetic separation, and ball milling was used to fabricate a microwave absorber. The extracted magnetic powder was ground-milled using two different techniques: (i) a conventional milling technique (CM) and (ii) mechanical alloying (MM) process. The Fe3O4/CM samples were prepared by a conventional milling process using steel pot ball milling, while the Fe3O4/MM samples were prepared using a high-energy ball milling (HEBM) method. The effect of milling time on the structural, phase composition, and electromagnetic properties were examined using X-ray diffraction (XRD) and a vector network analyzer (VNA). XRD confirmed the formation of magnetite after both the magnetic separation and milling processes. The results revealed that Fe3O4 exhibited excellent microwave absorption properties because of the synergistic characteristics of its dielectric and magnetic loss. The results showed that the Fe3O4/CM particle powder had a greater absorption power (reflection loss: <−10 dB) with 99.9% absorption, a minimum reflection loss of −30.83 dB, and an effective bandwidth of 2.30 GHz for 2 mm thick samples. The results revealed the Fe3O4/MM powders had higher absorption properties, including a higher RL of −20.59 dB and a broader bandwidth of 2.43 GHz at a matching thickness of only 1 mm. The higher microwave absorption performance was attributed to the better impedance matching property caused by the porous microstructure. Furthermore, the magnetite, Fe3O4 showed superior microwave absorption characteristics because of the lower value of permittivity, which resulted in better impedance matching. This study presents a low-cost approach method by reutilizing mill scale waste to fabricate a high purity crystalline Fe3O4 with the best potential for designing magnetic nano-sized based microwave absorbers.

Funder

Ministry of Higher Education

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3