Abstract
The linear economy paradigm in place to date has to be seriously challenged to give way to a new school of thought known as the circular economy. In this research work, precast kerbs and paving blocks made with recycled concrete (RACC-mixture) bearing 50 wt% mixed recycled aggregate (masonry content of 33%) and an eco-efficient cementitious material as 25 wt% conventional binder replacement were evaluated to assess their intrinsic potential to replace traditional raw materials, in keeping with circular economy criteria. Therefore, precast products were subjected to mechanical strength, durability and microstructure tests and were compared to conventional concrete units (CC-mixture and commercially available precast elements). Although a class demotion was observed for water absorption and some decreases in flexural strength (26%), splitting tensile strength (12.8%) and electrical resistivity (45%) and a lower class water absorption were registered, and the recycled mixture also exhibited a greater performance in terms of compressive strength (6%), a better abrasion resistance classification and a comparable porosity and microstructure, which ensures a good concrete durability. In any case, the results showed that precast pieces were European standard-compliant, thus supporting the viability of the mixed recycled aggregates and eco-efficient cementitious replacement in footways.
Funder
Ministry of Economy, Industry and Competitiveness
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献