Impact of Drought and Salinity on Sweetgum Tree (Liquidambar styraciflua L.): Understanding Tree Ecophysiological Responses in the Urban Context

Author:

Baraldi RitaORCID,Przybysz Arkadiusz,Facini Osvaldo,Pierdonà Lorenzo,Carriero Giulia,Bertazza Gianpaolo,Neri Luisa

Abstract

Understanding urban tree responses to drought, salt stress, and co-occurring stresses, as well as the capability to recover afterward, is important to prevent the cited stresses’ negative effects on tree performance and ecological functionality. We investigated the impact of drought and salinity, alone and in combination, on leaf water potential, gas exchange, chlorophyll a fluorescence, xanthophyll cycle pigments, and isoprene emission of the urban tree species Liquidambar styraciflua L. Generally, drought had a rapid negative impact, while the effect of salt stress was more long lasting. Both stressors significantly decreased photosynthesis, transpiration, and stomatal conductance, as well as the maximum quantum efficiency of photosystem II (Fv/Fm) and the photochemical efficiency of PSII (ΦPSII), but increased nonphotochemical quenching (NPQ). Under stress conditions, a strong negative correlation between the PSII efficiency and the xanthophyll cycle pigment composition indicated a nocturnal retention of zeaxanthin and antheraxanthin in a state primed for energy dissipation. Drought and salt stress inhibited isoprene emission from leaves, although its emission was less responsive to stresses than stomatal conductance and photosynthesis. Full recovery of photosynthetic parameters took place after rewatering and washing off of excess salt, indicating that no permanent damage occurred, and suggesting downregulation rather than permanent impairment of the photosynthetic apparatus. Sweetgum trees were capable of withstanding and surviving moderate drought and salt events by activating defense mechanisms conferring tolerance to environmental stresses, without increasing the emission in the atmosphere of the highly reactive isoprene.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3