Evaluation of Magnesium-Phosphate Particle Incorporation into Co-Electrospun Chitosan-Elastin Membranes for Skin Wound Healing

Author:

Bryan Alex,Wales EthanORCID,Vedante Samarth,Blanquer AndreuORCID,Neupane DipeshORCID,Mishra Sanjay,Bačáková LucieORCID,Fujiwara TomokoORCID,Jennings Jessica AmberORCID,Bumgardner Joel D.ORCID

Abstract

Major challenges facing clinicians treating burn wounds are the lack of integration of treatment to wound, inadequate mechanical properties of treatments, and high infection rates which ultimately lead to poor wound resolution. Electrospun chitosan membranes (ESCM) are gaining popularity for use in tissue engineering applications due to their drug loading ability, biocompatibility, biomimetic fibrous structure, and antimicrobial characteristics. This work aims to modify ESCMs for improved performance in burn wound applications by incorporating elastin and magnesium-phosphate particles (MgP) to improve mechanical and bioactive properties. The following ESCMs were made to evaluate the individual components’ effects; (C: chitosan, CE: chitosan-elastin, CMg: chitosan-MgP, and CEMg: chitosan-elastin-MgP). Membrane properties analyzed were fiber size and structure, hydrophilic properties, elastin incorporation, MgP incorporation and in vitro release, mechanical properties, degradation profiles, and in vitro cytocompatibility with NIH3T3 fibroblasts. The addition of both elastin and MgP increased the average fiber diameter of CE (~400 nm), CMg (~360 nm), and CEMg (565 nm) compared to C (255 nm). Water contact angle analysis showed elastin incorporated membranes (CE and CEMg) had increased hydrophilicity (~50°) compared to the other groups (C and CMg, ~110°). The results from the degradation study showed mass retention of ~50% for C and CMg groups, compared to ~ 30% seen in CE and CEMg after 4 weeks in a lysozyme/PBS solution. CMg and CEMg exhibited burst-release behavior of ~6 µg/ml or 0.25 mM magnesium within 72 h. In vitro analysis with NIH3T3 fibroblasts showed CE and CEMg groups had superior cytocompatibility compared to C and CMg. This work has demonstrated the successful incorporation of elastin and MgP into ESCMs and allows for future studies on burn wound applications.

Funder

Czech Academy of Sciences

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

Reference62 articles.

1. Human skin wounds: A major and snowballing threat to public health and the economy

2. National Hospital Ambulatory Medical Care Survey: 2018 Emergency Department Summary Tables;Center for Disease Control and Prevention

3. Burn Injury Fact Sheet;Natl. Burn Aware. Week,2008

4. A study of the impact of leg ulcers on quality of life: Financial, social, and psychologic implications

5. Advances in Skin Regeneration Using Tissue Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3