Author:
Li Ying,Wang Guozhong,Guo Gensheng,Li Yaoxiang,Via Brian K.,Pei Zhiyong
Abstract
Wood density is a key indicator for tree functionality and end utilization. Appropriate chemometric methods play an important role in the successful prediction of wood density by visible and near infrared (Vis-NIR) spectroscopy. The objective of this study was to select appropriate pre-processing, variable selection and multivariate calibration techniques to improve the prediction accuracy of density in Chinese white poplar (Populus tomentosa carriere) wood. The Vis-NIR spectra were de-noised using four methods (lifting wavelet transform, LWT; wavelet transform, WT; multiplicative scatter correction, MSC; and standard normal variate, SNV), and four variable selection techniques, including successive projections algorithm (SPA), uninformative variables elimination (UVE), competitive adaptive reweighted sampling (CARS) and iteratively retains informative variables (IRIV), were compared to simplify the dimension of the high-dimensional spectral matrix. The non-linear models of generalized regression neural network (GRNN) and support vector machine (SVM) were performed using these selected variables. The results showed that the best prediction was obtained by GRNN models combined with the LWT and CARS method for Chinese white poplar wood density (Rp2 = 0.870; RMSEP = 13 Kg/m3; RPDp = 2.774).
Funder
the Science and Technology Project of Inner Mongolia
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献