Abstract
Mangroves are important wetland ecosystems on tropical and subtropical coasts. There is an urgent need to better understand how the spatial distribution of mangroves varies with climate change factors. Species distribution models can be used to reveal the spatial change of mangroves; however, global models typically have a horizontal resolution of hundreds of kilometers and more than 1 km, even after downscaling. In the present study, a maximum entropy model was used to predict suitable areas for the northernmost mangroves in China in the 2050s. An approach was proposed to improve the resolution and credibility of suitability predictions by incorporating land-use potential. Predictions were made based on two CMIP6 scenarios (i.e., SSP1-2.6 and SSP5-8.5). The results show that the northern edge of the natural mangrove distribution in China would migrate from 27.20° N to 27.39° N–28.15° N, and the total extent of suitable mangrove habitats would expand. By integrating 30 m resolution land-use data to refine the model’s predictions, under the SSP1-2.6 scenario, the suitable habitats of mangroves are predicted to be 13,435 ha, which would increase by 33.9% compared with the current scenario. Under the SSP5-8.5 scenario, the suitable area would be 23,120 ha, with an increased rate of 96.5%. Approximately 40–44% of the simulated mangrove patches would be adjacent to aquacultural ponds, cultivated, and artificial land, which may restrict mangrove expansion. Collectively, our results showed how climate change and land use could influence mangrove distributions, providing a scientific basis for adaptive mangrove habitat management despite climate change.
Funder
Fund of Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration
National Key Research and Development Program of China
National Natural Science Foundation of China
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献