Hybrid Beads of Zero Valent Iron Oxide Nanoparticles and Chitosan for Removal of Arsenic in Contaminated Water

Author:

Ahmed Mian Fawaz,Abbas Muhammad Asad,Mahmood AzharORCID,Ahmad Nasir M.,Rasheed Hifza,Qadir Muhammad Abdul,Khan Asad Ullah,Qiblawey HazimORCID,Zhu Shenmin,Sadiq Rehan,Khan Niaz Ali

Abstract

Water contaminated with highly hazardous metals including arsenic (As) is one of the major challenges faced by mankind in the present day. To address this pressing issue, hybrid beads were synthesized with various concentrations of zero valent iron oxide nanoparticles, i.e., 20% (FeCh-20), 40% (FeCh-40) and 60% (FeCh-60) impregnated into a polymer of chitosan. These hybrid beads were employed as an adsorbent under the optimized conditions of pH and time to facilitate the efficient removal of hazardous arsenic by adsorption cum reduction processes. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer- Emmett-Teller BET, a porosity test and wettability analysis were performed to characterize these hybrid beads. The porosity and contact angle of the prepared hybrid beads decreased with an increase in nanoparticle concentration. The effects of various adsorption factors such as adsorbent composition, contact period, pH value and the initial adsorbate concentration were also evaluated to study the performance of these beads for arsenic treatment in contaminated water. FeCh-20, FeCh-40 and FeCh-60 have demonstrated 63%, 81% and 70% removal of arsenic at optimized conditions of pH 7.4 in 10 h, respectively. Higher adsorption of arsenic by FeCh-40 is attributed to its optimal porosity, hydrophilicity and the presence of appropriate nanoparticle contents. The Langmuir adsorption kinetics described the pseudo second order. Thus, the novel beads of FeCh-40 developed in this work are a potent candidate for the treatment of polluted water contaminated with highly toxic arsenic metals.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3