Evaluation of the RF-Based Downscaled SMAP and SMOS Products Using Multi-Source Data over an Alpine Mountains Basin, Northwest China

Author:

Wen YuanyuanORCID,Zhao Jun,Zhu Guofeng,Xu Ri,Yang Jianxia

Abstract

Passive microwave surface soil moisture (SSM) products tend to have very low resolution, which massively limits their application and validation in regional or local-scale areas. Many climate and hydrological studies are urgently needed to evaluate the suitability of satellite SSM products, especially in alpine mountain areas where soil moisture plays a key role in terrestrial atmospheric exchanges. Aiming to overcome this limitation, a downscaling method based on random forest (RF) was proposed to disaggregate satellite SSM products. We compared the ability of the downscaled soil moisture active passive (SMAP) SSM and soil moisture and ocean salinity satellite (SMOS) SSM products to capture soil moisture information in upstream of the Heihe River Basin by using in situ measurements, the triple collocation (TC) method and temperature vegetation dryness index (TVDI). The results showed that the RF downscaling method has strong applicability in the study area, and the downscaled results of the two products after residual correction have more details, which can better represent the spatial distribution of soil moisture. The validation with the in situ SSM measurements indicates that the correlation between downscaled SMAP and in situ SSM is better than downscaled SMOS at both point and watershed scales in the Babaohe River Basin. From the TC method, the root mean square error (RMSE) of the CLDAS (CMA land data assimilation system), downscaled SMAP and downscaled SMOS were 0.0265, 0.0255 and 0.0317, respectively, indicating that the downscaled SMAP has smaller errors in the study area than others. However, the soil moisture distribution in the study area shown by the SMOS downscaled results is closer than the downscaled SMAP to the degree of drought reflected by TVDI. Overall, this study suggests that the proposed RF-based downscaling method can capture the variation of SSM well, and the downscaled SMAP products perform significantly better than the downscaled SMOS products after the accuracy verification and error analysis of the downscaled results, and it should be helpful to facilitate applications for satellite SSM products at small scales.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3