Iron- and Nitrogen-Modified Biochar for Nitrate Adsorption from Aqueous Solution

Author:

Haghighi Mood Sohrab1ORCID,Pelaez-Samaniego Manuel Raul2ORCID,Han Yinglei13,Mainali Kalidas14ORCID,Garcia-Perez Manuel1

Affiliation:

1. Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA

2. Department of Applied Chemistry and Production Systems, Faculty of Chemical Sciences, University of Cuenca, Cuenca 010107, Ecuador

3. Department of Bioresource and Environmental Security, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550, USA

4. US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Sustainable Biofuels and Co-Products Research Unit, Wyndmoor, PA 19038, USA

Abstract

Nutrient pollution poses a significant global environmental threat, and addressing this issue remains an ongoing challenge. Biochar has been identified as a potential adsorbent for environmental remediation. However, raw biochar has a low nitrate adsorption capacity; thus, biochar modification is necessary for targeted environmental applications. This work explored and compared the performance of Fe-doped, N-doped, and N-Fe-co-doped biochars from Douglas fir toward nitrate removal from an aqueous solution. A central composite experimental design was used to optimize processing variables, maximizing the surface area and nitrate adsorption capacity. Proximate analysis, elemental composition, gas physisorption, XPS, SEM, TEM, FTIR, and XRD were used to characterize the biochar’s properties. Pyrolysis under NH3 gas generated more pores in biochar than conventional pyrolysis. Doping biochar with N and Fe improved nitrate adsorption capacity from aqueous solutions. The maximum nitrate adsorption capacity of Fe-N-doped biochar produced at 800 °C was 20.67 mg g−1 in sorption tests at pH 3.0. The formation of N-containing functional groups and Fe oxides on the biochar surface enhanced the nitrate removal efficiency of N-Fe biochar. The results indicate that biochar’s adsorption capacity for NO3− is largely affected by the solution’s pH and biochar’s surface chemistry. Electrostatic attraction is the primary mechanism for nitrate adsorption.

Funder

the Sun Grant Initiative

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3