Life Cycle Assessment of Abandonment of Onshore Wind Power for Hydrogen Production in China

Author:

Du Yingying1,Huang Hui1,Liu Haibin1,Zhao Jingying1,Yang Qingzhou1

Affiliation:

1. School of Management, China University of Mining & Technology, Beijing 100083, China

Abstract

The development of clean energy is a crucial strategy for combating climate change. However, the widespread adoption of wind power has led to significant challenges such as wind curtailment and power restrictions. A potential solution is the abandonment of onshore wind power for hydrogen production (AOWPHP). To ensure the sustainable development of clean energy, it is essential to assess the environmental impact of the AOWPHP. This study employs a life cycle assessment (LCA) methodology to evaluate the environmental impacts of the AOWPHP using QDQ2-1 alkaline electrolyzer technology in China. Furthermore, a scenario analysis is conducted to project these environmental impacts over the next 30 years. The findings indicate the following: (1) The global warming potential (GWP) over the life cycle is 5614 kg CO2-eq, the acidification potential (AP) is 26 kg SO2-eq, the human toxicity potential (HTP) is 12 kg DCB-eq, and the photochemical ozone creation potential (POCP) is 3.77 × 10−6 kg C2H4-eq. (2) Carbon emissions during the production stage significantly contribute to the environmental impact, with steel and concrete being notably polluting materials. The POCP shows high sensitivity at 0.97%, followed by the GWP and AP. (3) The scenario analysis indicates an upward trend in environmental impacts across low-speed, baseline, and high-speed development scenarios, with impacts peaking by 2050. For instance, under the high-development scenario in 2050, the GWP for each material reaches 41,808 kg CO2-eq. To mitigate these impacts effectively, recommendations include reducing reliance on steel and concrete, developing green logistics, enhancing operational efficiency in wind farms and hydrogen production plants, and exploring new epoxy resin materials. These insights are crucial for promoting sustainable growth within the AOWPHP in China while reducing global carbon emissions.

Publisher

MDPI AG

Reference79 articles.

1. International Energy Agency (2020). World Energy Outlook 2020, IEA.

2. Xinhua Net (2024, July 02). Xi Jinping’s Speech at the Opening Ceremony of the Paris Climate Change Conference. Available online: http://www.xinhuanet.com//world/2015-12/01/c_1117309642.htm.

3. Falcone, P.M. (2019). Tourism-based circular economy in Salento (South Italy): A SWOT-ANP analysis. Soc. Sci., 8.

4. When democracy meets energy transitions: A typology of social power and energy system scale;Thombs;Energy Res. Soc. Sci.,2019

5. Circular bio-economy via energy transition supported by Fuzzy Cognitive Map modeling towards sustainable low-carbon environment;Kokkinos;Sci. Total Environ.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3