Research on Coal Flow Visual Detection and the Energy-Saving Control Method Based on Deep Learning

Author:

Xu Zhenfang1,Sun Zhi1,Li Jiayao1

Affiliation:

1. College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China

Abstract

In this paper, machine vision technology is used to recognize the coal flow on a conveyor belt and control the running speed of a motor according to the coal flow on the conveyor belt to achieve an energy-saving effect and provide technical support for the sustainable development of energy. In order to improve the accuracy of coal flow recognition, this paper proposes the color gain-enhanced multi-scale retina algorithm (AMSRCR) for image preprocessing. Based on the YOLOv8s-cls improved deep learning algorithm YOLO-CFS, the C2f-FasterNet module is designed to realize a lightweight network structure, and the three-dimensional weighted attention module, SimAm, is added to further improve the accuracy of the network without introducing additional parameters. The experimental results show that the recognition accuracy of the improved algorithm YOLO-CFS reaches 93.1%, which is 4.8% higher, and the detection frame rate reaches 32.68 frame/s, which is 5.9% higher. The number of parameters is reduced by 28.4%, and the number of floating-point operations is reduced by 33.3%. These data show that the YOLO-CFS algorithm has significantly improved the accuracy, lightness, and reasoning speed in the coal mine environment. Furthermore, it can satisfy the requirements of coal flow recognition, realize the energy-saving control of coal mine conveyor belts, and achieve the purpose of sustainable development of the coal mining industry.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference33 articles.

1. Design and Research of Belt Conveyor Energy-saving Control System Based on Coal Flow Recognition;Wang;Coal Mine Mach.,2023

2. Research of energy saving control system with frequency conversion speed regulation for belt conveyor;Sun;Ind. Mine Autom.,2013

3. Ji, J., Miao, C., and Li, X. (2020). Research on the Energy-Saving Control Strategy of a Belt Conveyor with Variable Belt Speed Based on the Material Flow Rate. PLoS ONE, 15.

4. Technical status and development trend of belt weigher;Li;Weigh. Instrum.,2012

5. Li, Y. (2018). On-Line Monitoring System for Mine Nuclear Belt Weighing. [Master’s Thesis, Xi’an University of Science and Technology].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3