Impact of Urban Morphology on High-Density Commercial Block Energy Consumption in Severe Cold Regions

Author:

Wang Yueran12ORCID,Pan Wente12ORCID,Liao Ziyan12

Affiliation:

1. School of Architecture and Design, Harbin Institute of Technology, Harbin 150001, China

2. Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China

Abstract

In sustainable city development, urban form plays an important role in block energy consumption, and as different environmental contexts and block functions create differences in energy use, it is necessary to study the relationship between morphology and energy consumption under the dual constraints of special environments and special block functions. Urban high-density blocks have concentrated energy consumption, high energy intensity, and complex morphological layout, but the influencing mechanism of the block’s morphology on its energy consumption remains unclear. Accordingly, this study focuses on the mechanism and evaluation method of the influence of morphology on the energy consumption of high-density commercial blocks in severe cold regions. Through Grasshopper model extraction, EnergyPlus performance simulation, Pearson correlation analysis, and linear regression analysis, this study extracts and classifies high-density commercial blocks in Harbin, China, into six basic layout types (Courtyard, Courtyard-T, Slab, Slab-T, Point, Point-T) according to their horizontal and vertical morphology, analyzes the energy consumption characteristics of each basic type, examines the relationships between energy use intensity (EUI) and building density (BD) and between floor area ratio (FAR) and building height standard deviation (BHSD), and constructs theoretical models by controlling variables to study the effect of a single form parameter on block EUI. The research findings are as follows: (1) The annual energy consumption of Point and Slab blocks is relatively low, whereas that of Courtyard and Courtyard-T blocks is higher due to the lack of open space in Courtyards and the poor ventilation in summer. (2) FAR is significantly correlated with the energy consumption of high-density commercial blocks in severe cold regions, while the effects of BD and BHSD are weaker than those of FAR. For every 0.1 increase in BD, every 1 increase in FAR, and every 1(m) increase in BHSD, the Winter Daily EUI of the Slab block changes by +0.87, −2.26, and −0.22 (kWh/m2), respectively, whereas that of the Slab-T block changes by −0.38, +0.68, and +0.08 (kWh/m2), respectively. (3) Controlling other variables, a large BD is theoretically beneficial to energy performance in the blocks, and increasing BD in the range of 0.4–0.55 has a significant effect on lowering energy consumption in Point blocks. EUI increases with the increase in FAR, while the change depends on different block types with the increase in BHSD. This study provides design strategies for high-density commercial blocks in severe cold regions. Under different layout types, though EUI shows different relationships with BD, FAR, and BHSD, Slab-T and Point-T blocks can achieve excellent energy performance by appropriately increasing BD and decreasing FAR, whereas Slab blocks need to decrease BD while increasing FAR. The patterns found in this paper can provide strategic help for policymaking and early urban design.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Reference47 articles.

1. IEA (2023). World Energy Outlook 2023, IEA. Available online: https://www.iea.org/reports/world-energy-outlook-2023.

2. Global Carbon Budget 2022;Friedlingstein;EarthSystem Sci. Data,2022

3. Building Energy Efficiency Research Center, Tsinghua University (2022). China Building Energy Efficiency Year-end Development Research Report 2022 (Public Construction Special Topic), China Construction Industry Publishing House.

4. Barriers and Strategies of Building Carbon Neutral in Cold Regions;Mei;China Sci. Found.,2023

5. (2016). Code for Thermal Design of Civil Buildings (Standard No. GB 50176-2016).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3