A Talk-Listen-Ack Beaconing Strategy for Neighbor Discovery Protocols in Wireless Sensor Networks

Author:

Shen ZhongORCID,Yao Yongkun,Zhu Kun,Xiang XinORCID

Abstract

Neighbor discovery is a fundamental function for sensor networking. Sensor nodes discover each other by sending and receiving beacons. Although many time-slotted neighbor discovery protocols (NDPs) have been proposed, the theoretical discovery latency is measured by the number of time slots rather than the unit of time. Generally, the actual discovery latency of a NDP is proportional to its theoretical discovery latency and slot length, and inversely proportional to the discovery probability. Therefore, it is desired to increase discovery probability while reducing slot length. This task, however, is challenging because the slot length and the discovery probability are two conflicting factors, and they mainly depend on the beaconing strategy used. In this paper, we propose a new beaconing strategy, called talk-listen-ack beaconing (TLA). We analyze the discovery probability of TLA by using a fine-grained slot model. Further, we also analyze the discovery probability of TLA that uses random backoff mechanism to avoid persistent collisions. Simulation and experimental results show that, compared with the 2-Beacon approach that has been widely used in time-slotted NDPs, TLA can achieve a high discovery probability even in a short time slot. TLA is a generic beaconing strategy that can be applied to different slotted NDPs to reduce their discovery latency.

Funder

National Natural Science Foundation of China

Technological Innovation 2025 Major Project of Ningbo Science and Technology Bureau

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3