Simulation and Key Physical Drivers of Primary Productivity in a Temperate Lake during the Ice-Covered Period: Based on the VGPM Model

Author:

Zhang Jie1,Xie Fei2,Song Haoming1ORCID,Meng Jingya1,Zhang Yiwen1

Affiliation:

1. School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China

2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

The primary productivity of seasonal ice-covered water bodies is an important variable for understanding how temperate lake ecosystems are changing due to global warming. But there have been few studies on the complete change process of primary productivity during the ice-covered period, and the connection between ice physical and associated biological production has not been fully understood. In this study, a Vertically Generalized Production Model (VGPM) suitable for the ice-covered period was used to calculate the primary productivity of a temperate lake, and the key physical controlling factor was analyzed in the process of primary productivity change in the ice-covered period. The results showed that there was a high level of primary productivity, (189.1 ± 112.6) mg C·m−2·d−1, under the ice in the study site, Hanzhang Lake. The phytoplankton production under the ice was not as severely restricted by light as commonly thought. The water temperature played a more crucial role in the changes of primary productivity than the light beneath the ice. The study highlighted the variability in primary productivity covering the whole ice-covered age, and provided a better understanding of how the aquatic environment of lakes in seasonal ice-covered areas was affected by warmer temperatures.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3