Evaluating the Effectiveness of Bioretention Cells for Urban Stormwater Management: A Systematic Review

Author:

Nazarpour Shaahin1ORCID,Gnecco Ilaria1ORCID,Palla Anna1ORCID

Affiliation:

1. Department of Civil, Chemical and Environmental Engineering, University of Genova, Via Montallegro 1, 16145 Genoa, Italy

Abstract

Bioretention cells (BRCs) are a promising low-impact development (LID) practice that are commonly used in urban settings to improve the water quality and mitigate the hydrological effects of stormwater runoff. BRCs have been the subject of extensive research in order to better comprehend their function and improve their effectiveness. However, BRC performance differs greatly among regions in terms of hydrologic performance and quality enhancement. Due to this variance in BRC effectiveness, the current study conducted a comprehensive systematic review to answer the question, “Are BRCs an effective LID method for urban catchment stormwater management?”. This review study analyzed the effectiveness of BRCs in mitigating hydrologic impacts and enhancing the quality of stormwater runoff in urban catchments. A review of 114 field, laboratory, and modeling studies on BRCs found that the promising BRCs may be one of the most successful approaches to restore urban hydrology cycle and improve stormwater water quality. With further development of BRCs, their performance in terms of quantity and quality will become more reliable, helping to develop long-term solutions to stormwater urban drainage issues. At the end of this review, the knowledge gaps and future prospects for BRC research are presented. In addition to providing a foundational grasp of BRC, this review study outlines the key design recommendations for BRC implementation in order to address the issues raised by certain BRC design errors.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference164 articles.

1. UN (United Nations). Department of Economic and Social Affairs (2022, December 20). World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html.

2. UN (United Nations). Department of Economic and Social Affairs (2022, December 20). World Urbanization Prospects: The 2018 Revision. Available online: https://population.un.org/wup/Publications/Files/WUP2018-KeyFacts.pdf.

3. The urban stream syndrome: Current knowledge and the search for a cure;Walsh;J. N. Am. Benthol. Soc.,2005

4. Impediments and solutions to sustainable, watershed-scale urban stormwater management: Lessons from Australia and the United States;Roy;Environ. Manag.,2008

5. Principles for urban stormwater management to protect stream ecosystems;Walsh;Freshw. Sci.,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3