HexTile: A Hexagonal DGGS-Based Map Tile Algorithm for Visualizing Big Remote Sensing Data in Spark

Author:

Yao Xiaochuang12ORCID,Yu Guojiang1,Li Guoqing3,Yan Shuai1,Zhao Long3,Zhu Dehai124

Affiliation:

1. College of Land Science and Technology, China Agricultural University, Beijing 100193, China

2. Key Laboratory for Agricultural Land Quality Monitoring and Control, Ministry of Natural Resources, Beijing 100193, China

3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

4. Laboratory of Remote Sensing for Agri-Hazards, Ministry of Agriculture and Rural Affairs, Beijing 100193, China

Abstract

The advent of the era of big remote sensing data has transformed traditional data management and analysis models, among which visualization analysis has gradually become an effective method, and map tiles for remote sensing data have always played an important role. However, in high-latitude regions, especially in polar regions, the deformation caused by map projection still exists, which lowers the accuracy of global or large-scale visual analysis, as well as the execution efficiency of big data. To solve the above problems, this paper proposes an algorithm called HexTile, which uses a hexagonal discrete global grid system (DGGS) model to effectively avoid problems caused by map projection and ensure global consistency. At the same time, the algorithm was implemented based on the Spark platform, which also has advantages in efficiency. Based on the DGGS model, hierarchical hexagon map tile construction and a visualization algorithm were designed, including hexagonal slicing, merging, and stitching. The above algorithms were parallelized in Spark to improve the big data execution efficiency. Experiments were carried out with Landsat-8, and the results show that the HexTile algorithm can not only guarantee the quality of global data, but also give full play to the advantages of the cluster in terms of efficiency. Additionally, the visualization was conducted with Cesium and OpenLayers to validate the integration and completeness of hexagon tiles. The scheme proposed in this paper could provide a reference for spatiotemporal big data visualization technology.

Funder

Department of Science and Technology of Henan Province

National Key R&D Program of China

National Supercomputing Center

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3