Affiliation:
1. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
2. Flood and Drought Disaster Prevention and Protection Center of Heilongjiang Province, Haerbin 150006, China
3. Research Center on Flood and Drought Disaster Reduction, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Abstract
Gridded gross domestic product (GDP) data are a crucial land surface parameter for many geoscience applications. Recently, machine learning approaches have become powerful tools in generating gridded GDP data. However, most machine learning approaches for gridded GDP estimation seldom consider the geographical properties of input variables. Therefore, in this study, a geographically weighted stacking ensemble learning approach was developed to generate gridded GDP data. Three algorithms—random forest, XGBoost, and LightGBM—were used as base models, and the linear regression in stacking ensemble learning was replaced by geographically weighted regression to locally fuse the three predictions. A case study was conducted in China to demonstrate the effectiveness of the proposed approach. The results showed that the proposed GDP downscaling approach outperformed the three base models and traditional stacking ensemble learning. Meanwhile, it had good predictive power on county-level GDP test data with R2 of 0.894, 0.976, and 0.976 for the primary, secondary, and tertiary sectors, respectively. Moreover, the predicted 1 km gridded GDP data had a high accuracy (R2 = 0.787) when evaluated by town-level GDP data. Hence, the proposed GDP downscaling approach provides a valuable option for generating gridded GDP data. The generated 1 km gridded GDP data of China from 2020 are of great significance for other applications.
Funder
Key Research and Development Program of Guangxi Province
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献