A Novel Lane Line Detection Algorithm for Driverless Geographic Information Perception Using Mixed-Attention Mechanism ResNet and Row Anchor Classification

Author:

Song Yongchao1ORCID,Huang Tao12,Fu Xin34,Jiang Yahong4,Xu Jindong1ORCID,Zhao Jindong1ORCID,Yan Weiqing1,Wang Xuan1ORCID

Affiliation:

1. School of Computer and Control Engineering, Yantai University, Yantai 264005, China

2. School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China

3. Engineering Research Center of Highway Infrastructure Digitalization, Ministry of Education, Xi’an 710064, China

4. College of Transportation Engineering, Chang’an University, Xi’an 710064, China

Abstract

Lane line detection is a fundamental and critical task for geographic information perception of driverless and advanced assisted driving. However, the traditional lane line detection method relies on manual adjustment of parameters, and has poor universality, a heavy workload, and poor robustness. Most deep learning-based methods make it difficult to effectively balance accuracy and efficiency. To improve the comprehensive perception ability of lane line geographic information in a natural traffic environment, a lane line detection algorithm based on a mixed-attention mechanism residual network (ResNet) and row anchor classification is proposed. A mixed-attention mechanism is added after the backbone network convolution, normalization and activation layers, respectively, so that the model can focus more on important lane line features to improve the pertinence and efficiency of feature extraction. In addition, to achieve faster detection speed and solve the problem of no vision, the method of lane line location selection and classification based on the row direction is used to detect whether there are lane lines in each candidate point according to the row anchor, reducing the high computational complexity caused by segmentation on a pixel-by-pixel basis of traditional semantic segmentation. Based on TuSimple and CurveLane datasets, multi-scene, multi-environment, multi-linear road image datasets and video sequences are integrated and self-built, and several experiments are designed and tested to verify the effectiveness of the proposed method. The test accuracy of the mixed-attention mechanism network model reached 95.96%, and the average time efficiency is nearly 180 FPS, which can achieve a high level of accuracy and real-time detection process. Therefore, the proposed method can meet the safety perception effect of lane line geographic information in natural traffic environments, and achieve an effective balance between the accuracy and efficiency of actual road application scenarios.

Funder

the Natural Science Foundation of Shandong Province

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference34 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3