Deep and Wide Transfer Learning with Kernel Matching for Pooling Data from Electroencephalography and Psychological Questionnaires

Author:

Collazos-Huertas Diego FabianORCID,Velasquez-Martinez Luisa Fernanda,Perez-Nastar Hernan Dario,Alvarez-Meza Andres Marino,Castellanos-Dominguez GermanORCID

Abstract

Motor imagery (MI) promotes motor learning and encourages brain–computer interface systems that entail electroencephalogram (EEG) decoding. However, a long period of training is required to master brain rhythms’ self-regulation, resulting in users with MI inefficiency. We introduce a parameter-based approach of cross-subject transfer-learning to improve the performances of poor-performing individuals in MI-based BCI systems, pooling data from labeled EEG measurements and psychological questionnaires via kernel-embedding. To this end, a Deep and Wide neural network for MI classification is implemented to pre-train the network from the source domain. Then, the parameter layers are transferred to initialize the target network within a fine-tuning procedure to recompute the Multilayer Perceptron-based accuracy. To perform data-fusion combining categorical features with the real-valued features, we implement stepwise kernel-matching via Gaussian-embedding. Finally, the paired source–target sets are selected for evaluation purposes according to the inefficiency-based clustering by subjects to consider their influence on BCI motor skills, exploring two choosing strategies of the best-performing subjects (source space): single-subject and multiple-subjects. Validation results achieved for discriminant MI tasks demonstrate that the introduced Deep and Wide neural network presents competitive performance of accuracy even after the inclusion of questionnaire data.

Funder

Departamento Administrativo de Ciencia, Tecnología e Innovación

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3