Transfer Learning on Small Datasets for Improved Fall Detection

Author:

Maray Nader,Ngu Anne Hee,Ni JianyuanORCID,Debnath Minakshi,Wang Lu

Abstract

Falls in the elderly are associated with significant morbidity and mortality. While numerous fall detection devices incorporating AI and machine learning algorithms have been developed, no known smartwatch-based system has been used successfully in real-time to detect falls for elderly persons. We have developed and deployed a SmartFall system on a commodity-based smartwatch which has been trialled by nine elderly participants. The system, while being usable and welcomed by the participants in our trials, has two serious limitations. The first limitation is the inability to collect a large amount of personalized data for training. When the fall detection model, which is trained with insufficient data, is used in the real world, it generates a large amount of false positives. The second limitation is the model drift problem. This means an accurate model trained using data collected with a specific device performs sub-par when used in another device. Therefore, building one model for each type of device/watch is not a scalable approach for developing smartwatch-based fall detection system. To tackle those issues, we first collected three datasets including accelerometer data for fall detection problem from different devices: the Microsoft watch (MSBAND), the Huawei watch, and the meta-sensor device. After that, a transfer learning strategy was applied to first explore the use of transfer learning to overcome the small dataset training problem for fall detection. We also demonstrated the use of transfer learning to generalize the model across the heterogeneous devices. Our preliminary experiments demonstrate the effectiveness of transfer learning for improving fall detection, achieving an F1 score higher by over 10% on average, an AUC higher by over 0.15 on average, and a smaller false positive prediction rate than the non-transfer learning approach across various datasets collected using different devices with different hardware specifications.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference49 articles.

1. (2019, June 17). Falls Are the Leading Cause of Death in Older Americans, Available online: https://www.cdc.gov/media/releases/2016/p0922-older-adult-falls.html.

2. (2019, June 17). Facts About Falls, Available online: https://www.cdc.gov/falls/facts.html.

3. (2019, June 17). 2017 Profile of Older Americans, Available online: https://acl.gov/sites/default/files/AgingandDisabilityinAmerica/2017OlderAmericansProfile.pdf.

4. (2019, November 18). Preventing Falls in Hospitals, Available online: https://www.ahrq.gov/professionals/systems/hospital/fallpxtoolkit/index.html.

5. Tacconi, C., Mellone, S., and Chiari, L. (2011, January 23–26). Smartphone-based applications for investigating falls and mobility. Proceedings of the 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, Dublin, Ireland.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3