Al2O3-Cu\Ethylene Glycol-Based Magnetohydrodynamic Non-Newtonian Maxwell Hybrid Nanofluid Flow with Suction Effects in a Porous Space: Energy Saving by Solar Radiation

Author:

Jeelani Mdi Begum1ORCID,Abbas Amir2

Affiliation:

1. Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 13314, Saudi Arabia

2. Department of Mathematics, Faculty of Science, University of Gujrat, Sub-Campus, Mandi Bahauddin 50400, Pakistan

Abstract

Nanotechnology is well-known for its versatile and general thermal transport disciplines, which are used in semiconductors, spacecraft, bioengineering, functional electronics, and biosensors. As a result, process optimization has attracted the interest of scientists and technologists. The main aim of the current analysis is to explore the enhancement of energy/heat transfer via the dispersion of cylindrical-shaped nanoparticles of alumina and copper in ethylene glycol as a base fluid using a non-Newtonian Maxwell fluid model. In the current study, the effects of solar radiation, plate suction, and magnetohydrodynamics on a Maxwell hybrid nanofluid are encountered. The flow is induced by linearly stretching a sheet angled at ξ=π/6, embedded in a porous space. The proposed problem is converted into a mathematical structure in terms of partial differential equations and then reduced to ordinary differential equations by using appropriate similarity variables. In the similarity solution, all the curves for the velocity field and temperature distribution remain similar, which means that the symmetry between the graphs for the velocity and temperature remains the same. Therefore, there is a strong correlation between similarity variables and symmetry. The obtained model, in terms of ordinary differential equations, is solved using the built-in numerical solver bvp4c. It is concluded that more nanoparticles in a fluid can make it heat up faster, as they are typically better at conducting heat than the fluid itself. This means that heat is transferred more quickly, raising the temperature of the fluid. However, more nanoparticles can also slow the flow speed of the fluid to control the boundary layer thickness. The temperature field is enhanced by increasing the solar radiation parameter, the magnetic field parameter, and the porous medium parameter at an angle of ξ=π/6, which serves the purpose of including radiation and the Lorentz force. The velocity field is decreased by increasing the values of the buoyancy parameter and the suction parameter effects at an angle of ξ=π/6. The current study can be used in the improvement of the thermal efficiency of nanotechnological devices and in renewable energy sources to save energy in the energy sector. The present results are compared with the published ones, and it is concluded that there is excellent agreement between them, which endorses the validity and accuracy of the current study.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference60 articles.

1. Choi, S.U., and Eastman, J.A. (1995). Enhancing Thermal Conductivity of Fluids with Nanoparticles.

2. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles;Masuda;Netsu Bussei.,1993

3. Buongiorno, J., and Hu, W. (2005, January 15–19). Nanofluid Coolants for Advanced Nuclear Power Plants. Proceedings of the ICAPP, Seoul, Republic of Korea.

4. Convective Transport in Nanofluids;Buongiorno;J. Heat Transf.,2006

5. Preparation methods and thermal performance of hybrid nanofluids;Sidik;J. Adv. Res. Mater. Sci.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3