Adaptive Reversible 3D Model Hiding Method Based on Convolutional Neural Network Prediction Error Expansion

Author:

Hu Guochang12,Qian Kun12,Li Yinghua3,Li Hong1,Xu Xinggui1,Xu Hao1

Affiliation:

1. School of Information, Yunnan University of Finance and Economics, Kunming 650221, China

2. Yunnan Key Laboratory of Service Computing, Kunming 650221, China

3. School of Mathematics and Statisties, Huizhou University, Huizhou 516007, China

Abstract

Although reversible data hiding technology is widely used, it still faces several challenges and issues. These include ensuring the security and reliability of embedded secret data, improving the embedding capacity, and maintaining the quality of media data. Additionally, irregular data types, such as three-dimensional point clouds and triangle mesh-represented 3D models, lack an ordered structure in their representation. As a result, embedding these irregular data into digital media does not provide sufficient information for the complete recovery of the original data during extraction. To address this issue, this paper proposes a method based on convolutional neural network prediction error expansion to enhance the embedding capacity of carrier images while maintaining acceptable visual quality. The triangle mesh representation of the 3D model is regularized in a two-dimensional parameterization domain, and the regularized 3D model is reversibly embedded into the image. The process of embedding and extracting confidential information in carrier images is symmetrical, and the regularization and restoration of 3D models are also symmetrical. Experiments show that the proposed method increases the reversible embedding capacity, and the triangle mesh can be conveniently subjected to reversible hiding.

Funder

National Natural Science Foundation of China

Yunnan Fundamental Research Projects

Scientific Research Foundation of Yunnan Provincial Department of Education

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3