Modelling Symmetric Ion-Acoustic Wave Structures for the BBMPB Equation in Fluid Ions Using Hirota’s Bilinear Technique

Author:

Ceesay Baboucarr12,Baber Muhammad Zafarullah1,Ahmed Nauman13ORCID,Akgül Ali345ORCID,Cordero Alicia6ORCID,Torregrosa Juan R.6ORCID

Affiliation:

1. Department of Mathematics and Statistics, The University of Lahore, Lahore 54000, Pakistan

2. Department of Mathematics, The University of The Gambia, Serrekunda P.O. Box 3530, The Gambia

3. Department of Computer Science and Mathematics, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon

4. Department of Mathematics, Art and Science Faculty, Siirt University, 56100 Siirt, Turkey

5. Department of Mathematics, Mathematics Research Center, Near East University, Near East Boulevard, Mersin 10, 99138 Nicosia, Turkey

6. Multidisciplinary Institute of Mathematics, Universitat Politènica de València, 46022 València, Spain

Abstract

This paper investigates the ion-acoustic wave structures in fluid ions for the Benjamin–Bona–Mahony–Peregrine–Burgers (BBMPB) equation. The various types of wave structures are extracted including the three-wave hypothesis, breather wave, lump periodic, mixed-type wave, periodic cross-kink, cross-kink rational wave, M-shaped rational wave, M-shaped rational wave solution with one kink wave, and M-shaped rational wave with two kink wave solutions. The Hirota bilinear transformation is a powerful tool that allows us to accurately find solutions and predict the behaviour of these wave structures. Through our analysis, we gain a better understanding of the complex dynamics of ion-acoustic waves and their potential applications in various fields. Moreover, our findings contribute to the ongoing research in plasma physics that utilize ion-acoustic wave phenomena. To show the physical behaviour of the solutions, some 3D plots and their respective contour level are shown, choosing different values of the parameters.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference32 articles.

1. Ion-acoustic wave structures in the fluid ions modeled by higher dimensional generalized Korteweg-de Vries–Zakharov–Kuznetsov equation;Younas;J. Ocean Eng. Sci.,2022

2. An efficient analytical technique for fractional partial differential equations occurring in ion acoustic waves in plasma;Goswami;J. Ocean Eng. Sci.,2019

3. Gas-dynamic approach to the theory of non-linear ion-acoustic waves in plasma with Kaniadakis’ distributed species;Dubinov;Adv. Space Res.,2023

4. Reciprocal Bäcklund transformations and travelling wave structures of some nonlinear pseudo-parabolic equations;Usman;Partial Differ. Equ. Appl. Math.,2023

5. Lipatov, A.S. (2002). The Hybrid Multiscale Simulation Technology: An Introduction with Application to Astrophysical and Laboratory Plasmas, Springer Science & Business Media.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3