Landauer’s Princple for Fermionic Fields in One-Dimensional Bags

Author:

Cao Yu-Song1ORCID,Liu Yanxia1,Zhang Rong2

Affiliation:

1. School of Physics and Astronomy, Yunnan University, Kunming 650091, China

2. Beijing Computational Science Research Center, Beijing 100193, China

Abstract

In recent years, growing interest has been paid to the exploration of the concepts of entropy, heat and information, which are closely related to the symmetry properties of the physical systems in quantum theory. In this paper, we follow this line of research on the the validity of the concepts in quantum field theory by studying Landauer’s principle for a Dirac field interacting perturbatively with an Unruh–DeWitt detector in a 1+1-dimensional MIT bag cavity. When the field is initially prepared in the vacuum state, we find that the field always absorbs heat, while the Unruh–DeWitt detector can either gain or lose entropy, depending on its motion status, as a result of the Unruh effect. When the field is initially prepared in the thermal state and the detector remains still, the heat transfer and entropy change can be obtained under two additional but reasonable approximations: (i) one is where the duration of the interaction is turned on for a sufficiently long period, and (ii) the other is where the Unruh–DeWitt detector is in resonance with one of the field modes. Landauer’s principle is verified for both considered cases. Compared to the results of a real scalar field, we find that the formulas of the vacuum initial state differ solely in the internal degree of freedom of the Dirac field, and the distinguishability of the fermion and anti-fermion comes into play when the initial state of the Dirac field is thermal. We also point out that the results for a massless fermionic field can be obtained by taking the particle mass m→0 straightforwardly.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference29 articles.

1. Hu, B.L., and Jacobson, T.A. (1993). Directions in General Relativity, Cambridge University Press.

2. A detector-based measurement theory for quantum field theory;Garay;Phys. Rev. D,2022

3. Entanglement of the vacuum between left, right, future, and past;Higuchi;Phys. Rev. D,2017

4. Entanglement from the vacuum;Reznik;Found. Phys.,2003

5. Swingle, B. (2010). Mutual information and the structure of entanglement in quantum field theory. arXiv.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3