Spatial Integration of Cellular Shapes in Green Microalgae with Complex Morphology, the Genus Micrasterias (Desmidiales, Zygnematophyceae)

Author:

Neustupa Jiri1ORCID,Woodard Katerina1

Affiliation:

1. Department of Botany, Faculty of Science, Charles University, Benatska 2, 12801 Prague, Czech Republic

Abstract

While ontogeny of multicellular organisms requires an interplay among tissues, morphogenesis of unicellular structures is typically organised with respect to differential growth of their cell covering. For example, shapes of various microalgae have often been emphasised as examples of symmetric fractal-like cellular morphology. Such a self-similar pattern is typical for the variability of a spatial fractal, with the shape variation remaining the same at different scales. This study investigated how these cells are integrated. A geometric morphometric analysis of spatial integration in the genus Micrasterias was used to assess the variation across scales by comparing the slopes of the linear fit of the log bending energy against the log variance of partial warps. Interestingly, the integration patterns were distinctly different from the notion of self-similarity. The variability consistently increased with decreasing scale, regardless of the cultivation temperature or the species examined. In addition, it was consistent after the adjustment of the slopes for the digitisation error. The developmental control over the final shape progressively declines with decreasing spatial scale, to the point that the terminal lobules are shaped almost independently of each other. These findings point to possible considerable differences in the generation of morphological complexity between free-living cells and multicellular organisms.

Funder

Czech Science Foundation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3