Characteristics of Channel Eigenvalues and Mutual Coupling Effects for Holographic Reconfigurable Intelligent Surfaces

Author:

Sun ShuORCID,Tao Meixia

Abstract

As a prospective key technology for the next-generation wireless communications, reconfigurable intelligent surfaces (RISs) have gained tremendous research interest in both the academia and industry in recent years. Only limited knowledge, however, has been obtained about the channel eigenvalue characteristics and spatial degrees of freedom (DoF) of systems containing RISs, especially when mutual coupling (MC) is present between the array elements. In this paper, we focus on the small-scale spatial correlation and eigenvalue properties excluding and including MC effects, for RISs with a quasi-continuous aperture (i.e., holographic RISs). Specifically, asymptotic behaviors of far-field and near-field eigenvalues of the spatial correlation matrix of holographic RISs without MC are first investigated, where the counter-intuitive observation of a lower DoF with more elements is explained by leveraging the power spectrum of the spatial correlation function. Second, a novel metric is proposed to quantify the inter-element correlation or coupling strength in RISs and ordinary antenna arrays. Furthermore, in-depth analysis is performed regarding the MC effects on array gain, effective spatial correlation, and eigenvalue architectures for a variety of element intervals when a holographic RIS works in the radiation and reception mode, respectively. The analysis and numerical results demonstrate that a considerable amount of the eigenvalues of the spatial correlation matrix correspond to evanescent waves that are promising for near-field communication and sensing. More importantly, holographic RISs can potentially reach an array gain conspicuously larger than conventional arrays by exploiting MC, and MC has discrepant impacts on the effective spatial correlation and eigenvalue structures at the transmitter and receiver.

Funder

Shanghai Jiao Tong University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of the Number of Elements and Transmit Power in the Performance of Reconfigurable Intelligent Surface Systems;Proceedings of the 2023 11th International Conference on Computer and Communications Management;2023-08-04

2. 5G-Advanced Toward 6G: Past, Present, and Future;IEEE Journal on Selected Areas in Communications;2023-06

3. A Novel GBSM for Holographic MIMO Communication Systems;2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3