Effects of Tissue Preservation on Carbon and Nitrogen Stable Isotope Signatures in Syngnathid Fishes and Prey

Author:

Planas MiquelORCID,Paltrinieri Alex,Carneiro Mario Davi DiasORCID,Hernández-Urcera JorgeORCID

Abstract

Isotopic stable analysis (SIA) is a powerful tool in the assessment of different types of ecological and physiological studies. For that, different preservation methods for sampled materials are commonly used prior to isotopic analysis. The effects of various preservation methods (freezing, ethanol and formaldehyde) were analyzed for C:N, and δ13C and δ15N signals on a variety of tissues including dorsal fins (three seahorse and two pipefish species), seahorse newborns (three seahorses species), and prey (copepods and different stages of Artemia) commonly used to feed the fishes under rearing conditions. The aims of the study were: (i) to evaluate isotopic effects of chemical preservation methods across different types of organisms and tissues, using frozen samples as controls, and (ii) to construct the first conversion models available in syngnathid fishes. The chemical preservation in ethanol and, to a lesser extent, in formaldehyde significantly affected δ13C values, whereas the effects on δ15N signatures were negligible. Due to their low lipid content, the isotopic signals in fish fins was almost unaffected, supporting the suitability of dorsal fins as the most convenient material in isotopic studies on vulnerable species such as syngnathids. The regression equations provided resulted convenient for the successful conversion of δ13C between preservation treatments. Our results indicate that the normalization of δ15N signatures in preserved samples is unnecessary. The conversion models should be applicable in isotopic field studies, laboratory experiments, and specimens of historical collections.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3