Design of a Tripod-Shaped Radiator Patch Antenna for Ultra-Wideband Direction Finding

Author:

Youn Sangwoon1,Ohm Sungsik2ORCID,Jang Byung-Jun3,Choo Hosung1ORCID

Affiliation:

1. Department of Electronic and Electrical Engineering, Hongik University, Seoul 04066, Republic of Korea

2. Tactical Communication System Team, Hanwha Systems, Seongnam 13524, Republic of Korea

3. Department of Electrical Engineering, Kookmin University, Seoul 04066, Republic of Korea

Abstract

As UWB technology develops and devices become smaller, miniaturization techniques for an array antenna system are required. In addition, more in-depth research is needed for UWB direction-finding techniques using channel impulse response (CIR) data. This paper proposes an ultra-wideband (UWB) antenna using a single-radiator multiple-port (SRMP) design for the direction-finding systems of smart devices. The proposed SRMP antenna was designed using a single tripod-shaped patch that can replace the array system. The tripod-shaped radiator was optimized using the edge shape design function to improve its broadband and mutual coupling characteristics. For performance verification, the proposed antenna was fabricated, and the reflection coefficient, mutual coupling, and radiation patterns were measured in a fully anechoic chamber. The proposed antenna has an operating frequency band of 6.1 GHz (from 5.8 GHz to 11.9 GHz) for port 1 and a measured mutual coupling of −14.8 dB at 8 GHz. The SRMP antenna has measured maximum gains of 3.5 dBi for port 1 and 2.9 dBi for port 2. To examine the direction-finding performance, the fabricated antenna was connected to a circuit module with a DW3000 chip, which is widely employed in commercial mobile UWB systems. The direction of arrival (DoA) results using the measured CIR data show root-mean-square (RMS) errors of 1.57° and 4.58° at distances of 30 cm and 60 cm.

Funder

Samsung Research Funding Center of Samsung Electronics

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3