Isolation and Characterization of the Lytic Pseudoxanthomonas kaohsiungensi Phage PW916

Author:

Wen Chang,Ai Chaofan,Lu Shiyun,Yang Qiue,Liao HanpengORCID,Zhou Shungui

Abstract

The emergence of multidrug-resistant bacterial pathogens poses a serious global health threat. While patient infections by the opportunistic human pathogen Pseudoxanthomonas spp. have been increasingly reported worldwide, no phage associated with this bacterial genus has yet been isolated and reported. In this study, we isolated and characterized the novel phage PW916 to subsequently be used to lyse the multidrug-resistant Pseudoxanthomonas kaohsiungensi which was isolated from soil samples obtained from Chongqing, China. We studied the morphological features, thermal stability, pH stability, optimal multiplicity of infection, and genomic sequence of phage PW916. Transmission electron microscopy revealed the morphology of PW916 and indicated it to belong to the Siphoviridae family, with the morphological characteristics of a rounded head and a long noncontractile tail. The optimal multiplicity of infection of PW916 was 0.1. Moreover, PW916 was found to be stable under a wide range of temperatures (4–60 °C), pH (4–11) as well as treatment with 1% (v/w) chloroform. The genome of PW916 was determined to be a circular double-stranded structure with a length of 47,760 bp, containing 64 open reading frames that encoded functional and structural proteins, while no antibiotic resistance nor virulence factor genes were detected. The genomic sequencing and phylogenetic tree analysis showed that PW916 was a novel phage belonging to the Siphoviridae family that was closely related to the Stenotrophomonas phage. This is the first study to identify a novel phage infecting the multidrug-resistant P. kaohsiungensi and the findings provide insight into the potential application of PW916 in future phage therapies.

Funder

Guangdong Laboratory of Lingnan Modern Agriculture Project

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3