A Comparative Study of the Use of Stratified Cross-Validation and Distribution-Balanced Stratified Cross-Validation in Imbalanced Learning

Author:

Szeghalmy Szilvia1ORCID,Fazekas Attila1ORCID

Affiliation:

1. Faculty of Informatics, University of Debrecen, H-4028 Debrecen, Hungary

Abstract

Nowadays, the solution to many practical problems relies on machine learning tools. However, compiling the appropriate training data set for real-world classification problems is challenging because collecting the right amount of data for each class is often difficult or even impossible. In such cases, we can easily face the problem of imbalanced learning. There are many methods in the literature for solving the imbalanced learning problem, so it has become a serious question how to compare the performance of the imbalanced learning methods. Inadequate validation techniques can provide misleading results (e.g., due to data shift), which leads to the development of methods designed for imbalanced data sets, such as stratified cross-validation (SCV) and distribution optimally balanced SCV (DOB-SCV). Previous studies have shown that higher classification performance scores (AUC) can be achieved on imbalanced data sets using DOB-SCV instead of SCV. We investigated the effect of the oversamplers on this difference. The study was conducted on 420 data sets, involving several sampling methods and the DTree, kNN, SVM, and MLP classifiers. We point out that DOB-SCV often provides a little higher F1 and AUC values for classification combined with sampling. However, the results also prove that the selection of the sampler–classifier pair is more important for the classification performance than the choice between the DOB-SCV and the SCV techniques.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3