Decision Feedback Modulation Recognition with Channel Estimation for Amplify and Forward Two-Path Consecutive Relaying Systems

Author:

Marey MohamedORCID,Esmail Maged AbdullahORCID,Mostafa HalaORCID

Abstract

Automatic modulation recognition (AMR) is an essential component in the design of smart radios that can intelligently communicate with their surroundings in order to make the most efficient use of available resources. Throughout the last few decades, this issue has been subjected to in-depth examination in the published research literature. To the best of the authors’ knowledge, there have only been a few studies that have been specifically devoted to the task of performing AMR across cooperative wireless transmissions. In this contribution, we examine the AMR problem in the context of amplify-and-forward (AAF) two-path consecutive relaying systems (TCRS) for the first time in the literature. We leverage the property of data redundancy associated with AAF-TCRS signals to design a decision feedback iterative modulation recognizer via an expectation-maximization procedure. The proposed recognizer incorporates the soft information produced by the data detection process as a priori knowledge to generate the a posteriori expectations of the information symbols, which are employed as training symbols. The proposed algorithm additionally involves the development of an estimate of the channel coefficients as a secondary activity. The simulation outcomes have validated the feasibility of the proposed design by demonstrating its capacity to achieve an excellent recognition performance under a wide range of running conditions. According to the findings, the suggested technique converges within six rounds, achieving perfect recognition performance at a signal-to-noise ratio of 14 dB. Furthermore, the minimal pilot-to-frame-size ratio necessary to successfully execute the iterative procedure is 0.07. In addition, the proposed method is essentially immune to time offset and performs well throughout a broad range of frequency offset. Lastly, the proposed strategy beats the existing techniques in recognition accuracy while requiring a low level of processing complexity.

Funder

Princess Nourah bint Abdulrahman University

Prince Sultan University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3