Enhancing Energy Management Strategies for Extended-Range Electric Vehicles through Deep Q-Learning and Continuous State Representation

Author:

Montaleza Christian1ORCID,Arévalo Paul1ORCID,Gallegos Jimmy1ORCID,Jurado Francisco1ORCID

Affiliation:

1. Department of Electrical Engineering, Superior Polytechnic School of Linares, University of Jaén, 23700 Linares, Jaén, Spain

Abstract

The efficiency and dynamics of hybrid electric vehicles are inherently linked to effective energy management strategies. However, complexity is heightened due to uncertainty and variations in real driving conditions. This article introduces an innovative strategy for extended-range electric vehicles, grounded in the optimization of driving cycles, prediction of driving conditions, and predictive control through neural networks. First, the challenges of the energy management system are addressed by merging deep reinforcement learning with strongly convex objective optimization, giving rise to a pioneering method called DQL-AMSGrad. Subsequently, the DQL algorithm has been implemented, allowing temporal difference-based updates to adjust Q values to maximize the expected cumulative reward. The loss function is calculated as the mean squared error between the current estimate and the calculated target. The AMSGrad optimization method has been applied to efficiently adjust the weights of the artificial neural network. Hyperparameters such as the learning rate and discount factor have been tuned using data collected during real-world driving tests. This strategy tackles the “curse of dimensionality” and demonstrates a 30% improvement in adaptability to changing environmental conditions. With a 20%-faster convergence speed and a 15%-superior effectiveness in updating neural network weights compared to conventional approaches, it also highlights an 18% reduction in fuel consumption in a case study with the Nissan Xtrail e-POWER system, validating its practical applicability.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3