A Hybrid Control-Oriented PEMFC Model Based on Echo State Networks and Gaussian Radial Basis Functions

Author:

Aguilar José Agustín1,Chanal Damien2ORCID,Chamagne Didier2,Yousfi Steiner Nadia2,Péra Marie-Cécile2,Husar Attila13,Andrade-Cetto Juan1ORCID

Affiliation:

1. Institut de Robòtica i Informàtica Industrial, Consejo Superior de Investigaciones Científicas-Universitat Politèctnica de Catalunya, Llorens Artigas 4-6, 08028 Barcelona, Spain

2. Institut FEMTO-ST, Université de Franche-Comté, UTBM CNRS, F-90000 Belfort, France

3. Departament de Mecànica de Fluids, Universitat Politècnica de Catalunya, Pavelló 1, Diagonal 647, 08028 Barcelona, Spain

Abstract

The goal of increasing efficiency and durability of fuel cells can be achieved through optimal control of their operating conditions. In order to implement such controllers, accurate and computationally efficient fuel cell models must be developed. This work presents a hybrid (physics-based and data-driven), control-oriented model for approximating the output voltage of proton exchange membrane fuel cells (PEMFCs) while operating under dynamical conditions. First, a physics-based model, built from simplified electrochemical, membrane dynamics and mass conservation equations, is developed and validated through experimental data. Second, a data-driven, neural network (echo state network) is trained, fitted and tested with the same dataset. Then, the hybrid model is formed as a parallel structure, where the simplified physics-based model and the trained data-driven model are merged through an algorithm based on Gaussian radial basis functions. The merging algorithm compares the output of both single models and assigns weights for computing the prediction of the hybrid result. The proposed hybrid model structure is successfully trained, validated and tested with an experimental dataset originating from fuel cells within an automotive PEMFC stack. The hybrid model is assessed through the mean square error index, with the result of a low tracking error.

Publisher

MDPI AG

Reference51 articles.

1. U.S (2023, July 02). Department of Energy, Fuel Cell Technologies Office. Multi-Year Research, Development, and Demonstration Plan, Available online: www.energy.gov/eere/fuelcells/downloads/hydrogen-and-fuel-cell-technologies-office-multi-year-research-development.

2. Agyekum, E.B., Ampah, J.D., Wilberforce, T., Afrane, S., and Nutakor, C. (2022). Research Progress, Trends, and Current State of Development on PEMFC-New Insights from a Bibliometric Analysis and Characteristics of Two Decades of Research Output. Membranes, 12.

3. Performance analysis of 5Â kW PEMFC-based residential micro-CCHP with absorption chiller;Chen;Int. J. Hydrogen Energy,2015

4. Fuel cell application in the automotive industry and future perspective;Olabi;Energy,2021

5. Kinetic Model of Platinum Dissolution in PEMFCs;Darling;J. Electrochem. Soc.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3