The Coordinated Power Control of Flexible DC Microgrids in Sustainably Optimized Yacht Marinas

Author:

Tavagnutti Andrea Alessia1,Bertagna Serena1ORCID,Dalle Feste Marco1,Chiandone Massimiliano1ORCID,Bosich Daniele1ORCID,Bucci Vittorio1ORCID,Sulligoi Giorgio1

Affiliation:

1. Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy

Abstract

Nowadays, the industrial world is undergoing a disruptive transformation towards more environmentally sustainable solutions. In the blue economy, this new approach is not only expressed in the domain of actual vessels, but also in the development of charging infrastructure, displaying a notable transition towards more eco-friendly solutions. The key focus lies in adopting flexible power systems capable of integrating renewable energy sources and storage technologies. Such systems play a crucial role in enabling a shift towards low-emission maritime transport. The emissions reduction goal extends beyond onboard shipboard distribution systems, encompassing also the design of supplying platforms and marinas. This study explores the implementation of a controlled DC microgrid tailored to efficient management of power flows within a yacht marina. Once having established the interfaces for the vessels at berth, the integration between the vessels, the onshore photovoltaic plant and the battery storage unit is made possible thanks to the coordinated management of multiple power converters. The overarching goal is to curtail reliance on external energy sources. Within this DC microgrid framework, a centralized controller assumes a pivotal role in orchestrating the power sources and loads. This coordinated management is essential to achieve sustainable operations, ultimately leading to the reduction of emissions from both ships and onshore power plants.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3