Osteocytes: Their Lacunocanalicular Structure and Mechanoresponses

Author:

Moriishi Takeshi,Komori Toshihisa

Abstract

Osteocytes connect with neighboring osteocytes and osteoblasts through their processes and form an osteocyte network. Shear stress on osteocytes, which is induced by fluid flow in the lacunae and canaliculi, has been proposed as an important mechanism for mechanoresponses. The lacunocanalicular structure is differentially developed in the compression and tension sides of femoral cortical bone and the compression side is more organized and has denser and thinner canaliculi. Mice with an impaired lacunocanalicular structure may be useful for evaluation of the relationship between lacunocanalicular structure and mechanoresponses, although their bone component cells are not normal. We show three examples of mice with an impaired lacunocanalicular structure. Ablation of osteocytes by diphtheria toxin caused massive osteocyte apoptosis, necrosis or secondary necrosis that occurred after apoptosis. Osteoblast-specific Bcl2 transgenic mice were found to have a reduced number of osteocyte processes and canaliculi, which caused massive osteocyte apoptosis and a completely interrupted lacunocanalicular network. Osteoblast-specific Sp7 transgenic mice were also revealed to have a reduced number of osteocyte processes and canaliculi, as well as an impaired, but functionally connected, lacunocanalicular network. Here, we show the phenotypes of these mice in physiological and unloaded conditions and deduce the relationship between lacunocanalicular structure and mechanoresponses.

Funder

Japanese Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3