Abstract
The process of protonation of [2,6-B10H8O2CCH3]− was investigated both theoretically and experimentally. The most suitable conditions for protonation of the derivative [2,6-B10H8O2CCH3]− were found. The process of protonation was carried out in the presence of an excess of trifluoromethanesulfonic acid CF3SO3H at room temperature in dichloromethane solution. The structure of the resulting complex [2,6-B10H8O2CCH3*Hfac]0 was established using NMR data and the results of DFT calculations. An additional proton atom Hfac was found to be localized on one of the facets that was opposite the boron atom in a substituted position, and which bonded mainly with one apical boron atom. The main descriptors of the B-Hfac bond were established theoretically using QTAIM and NBO approaches. In addition, the mechanism of [2,6-B10H8O2CCH3]− protonation was investigated.
Funder
Russian Science Foundation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献