Robust Parking Path Planning with Error-Adaptive Sampling under Perception Uncertainty

Author:

Lee SeongjinORCID,Lim WonteakORCID,Sunwoo MyounghoORCID

Abstract

In automated parking systems, a path planner generates a path to reach the vacant parking space detected by a perception system. To generate a safe parking path, accurate detection performance is required. However, the perception system always includes perception uncertainty, such as detection errors due to sensor noise and imperfect algorithms. If the parking path planner generates the parking path under uncertainty, problems may arise that cause the vehicle to collide due to the automated parking system. To avoid these problems, it is a challenging problem to generate the parking path from the erroneous parking space. To solve this conundrum, it is important to estimate the perception uncertainty and adapt the detection error in the planning process. This paper proposes a robust parking path planning that combines an error-adaptive sampling of generating possible path candidates with a utility-based method of making an optimal decision under uncertainty. By integrating the sampling-based method and the utility-based method, the proposed algorithm continuously generates an adaptable path considering the detection errors. As a result, the proposed algorithm ensures that the vehicle is safely located in the true position and orientation of the parking space under perception uncertainty.

Funder

Ministry of Education, Republic of Korea

Ministry of Trade, Industry and Energy

Ministry of Education, Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parallel Parking Path Planning Based on Improved Arctangent Function Optimization;International Journal of Automotive Technology;2023-02

2. Path Planning in Localization Uncertaining Environment Based on Dijkstra Method;Frontiers in Neurorobotics;2022-03-11

3. Automatic Driving Vehicle Path Planning Based on Deep Convolution Neural Network;2022 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS);2022-03

4. Data-driven trajectory-tracking in automated parking system via iterative learning compensation and model predictive control;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-02-24

5. A GRASP-Based Approach for Planning UAV-Assisted Search and Rescue Missions;Sensors;2021-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3