Abstract
Nowadays, for numerous reasons, smart farming systems focus on the use of image processing technologies and 5G communications. In this paper, we propose a tracking system for individual cows using an ear tag visual analysis. By using ear tags, the farmers can track specific data for individual cows such as body condition score, genetic abnormalities, etc. Specifically, a four-digit identification number is used, so that a farm can accommodate up to 9999 cows. In our proposed system, we develop an individual cow tracker to provide effective management with real-time upgrading enforcement. For this purpose, head detection is first carried out to determine the cow’s position in its related camera view. The head detection process incorporates an object detector called You Only Look Once (YOLO) and is then followed by ear tag detection. The steps involved in ear tag recognition are (1) finding the four-digit area, (2) digit segmentation using an image processing technique, and (3) ear tag recognition using a convolutional neural network (CNN) classifier. Finally, a location searching system for an individual cow is established by entering the ID numbers through the application’s user interface. The proposed searching system was confirmed by performing real-time experiments at a feeding station on a farm at Hokkaido prefecture, Japan. In combination with our decision-making process, the proposed system achieved an accuracy of 100% for head detection, and 92.5% for ear tag digit recognition. The results of using our system are very promising in terms of effectiveness.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference24 articles.
1. Cattle traceability system in Japan for bovine spongiform encephalopathy;Katsuaki;Vet. Ital.,2008
2. Individual Cattle Identification Using a Deep Learning Based Framework
3. Yolov3: An incremental improvement;Redmon;arXiv,2018
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献