Automatic Cow Location Tracking System Using Ear Tag Visual Analysis

Author:

Zin Thi ThiORCID,Pwint Moe Zet,Seint Pann Thinzar,Thant Shin,Misawa Shuhei,Sumi Kosuke,Yoshida Kyohiro

Abstract

Nowadays, for numerous reasons, smart farming systems focus on the use of image processing technologies and 5G communications. In this paper, we propose a tracking system for individual cows using an ear tag visual analysis. By using ear tags, the farmers can track specific data for individual cows such as body condition score, genetic abnormalities, etc. Specifically, a four-digit identification number is used, so that a farm can accommodate up to 9999 cows. In our proposed system, we develop an individual cow tracker to provide effective management with real-time upgrading enforcement. For this purpose, head detection is first carried out to determine the cow’s position in its related camera view. The head detection process incorporates an object detector called You Only Look Once (YOLO) and is then followed by ear tag detection. The steps involved in ear tag recognition are (1) finding the four-digit area, (2) digit segmentation using an image processing technique, and (3) ear tag recognition using a convolutional neural network (CNN) classifier. Finally, a location searching system for an individual cow is established by entering the ID numbers through the application’s user interface. The proposed searching system was confirmed by performing real-time experiments at a feeding station on a farm at Hokkaido prefecture, Japan. In combination with our decision-making process, the proposed system achieved an accuracy of 100% for head detection, and 92.5% for ear tag digit recognition. The results of using our system are very promising in terms of effectiveness.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference24 articles.

1. Cattle traceability system in Japan for bovine spongiform encephalopathy;Katsuaki;Vet. Ital.,2008

2. Individual Cattle Identification Using a Deep Learning Based Framework

3. Yolov3: An incremental improvement;Redmon;arXiv,2018

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3