Low-Cost Automated Design of Compact Branch-Line Couplers

Author:

Bekasiewicz AdrianORCID

Abstract

Branch-line couplers (BLCs) are important components of wireless communication systems. Conventional BLCs are often characterized by large footprints which make miniaturization an important pre-requisite for their application in modern devices. State-of-the-art approaches to design compact BLCs are largely based on the use of high-permittivity substrates and multi-layer topologies. Alternative methods involve replacement of transmission-line sections of the circuit, with their composite counterparts, referred to as compact cells (CCs). Due to the efficient use of available space, CC-based couplers are often characterized by small footprints. The design of compact BLCs is normally conducted based on engineering experience. The process is laborious and requires many adjustments of topology followed by manual or, semi-automatic tuning of design parameters. In this work, a framework for low-cost automated design of compact BLCs using pre-defined CCs is proposed. The low cost of the presented design technique is ensured using equivalent-circuit models, space mapping correction methods, and trust-region-based local optimization algorithms. The performance of the framework is demonstrated based on three examples, concerning the design of unequal-power split coupler, comparison of automatically generated compact BLCs, as well as rapid re-design of the coupler for different substrates. Furthermore, the approach has been benchmarked against the state-of-the-art methods for low-cost design of circuits.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Comparison of Automatically Generated Topologically Agnostic Patch Antennas;2024 25th International Microwave and Radar Conference (MIKON);2024-07-01

2. Port Tuning and Tuning Space Mapping;2023 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO);2023-06-28

3. A compact spline-enhanced monopole antenna for broadband/multi-band and beyond UWB applications;AEU - International Journal of Electronics and Communications;2022-03

4. EM-Driven Multi-Objective Optimization of a Generic Monopole Antenna by Means of a Nested Trust-Region Algorithm;Applied Sciences;2021-04-27

5. Low-Cost Unattended Design of Miniaturized 4 × 4 Butler Matrices with Nonstandard Phase Differences;Sensors;2021-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3