Simulation System of Electric-Powered Wheelchairs for Training Purposes

Author:

Hernandez-Ossa Kevin A.ORCID,Montenegro-Couto Eduardo H.,Longo Berthil,Bissoli AlexandreORCID,Sime Mariana M.ORCID,Lessa Hilton M.,Enriquez Ivan R.,Frizera-Neto AnselmoORCID,Bastos-Filho TeodianoORCID

Abstract

For some people with severe physical disabilities, the main assistive device to improve their independence and to enhance overall well-being is an electric-powered wheelchair (EPW). However, there is a necessity to offer users EPW training. In this work, the Simcadrom is introduced, which is a virtual reality simulator for EPW driving learning purposes, testing of driving skills and performance, and testing of input interfaces. This simulator uses a joystick as the main input interface, and a virtual reality head-mounted display. However, it can also be used with an eye-tracker device as an alternative input interface and a projector to display the virtual environment (VE). Sense of presence, and user experience questionnaires were implemented to evaluate this version of the Simcadrom in addition to some statistical tests for performance parameters like: total elapsed time, path following error, and total number of commands. A test protocol was proposed and, considering the overall results, the system proved to simulate, very realistically, the usability, kinematics, and dynamics of a real EPW in a VE. Most subjects were able to improve their EPW driving performance in the training session. Furthermore, all skills learned are feasible to be transferred to a real EPW.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference49 articles.

1. Disability and Development Report: Realizing the Sustainable Development Goals by, for and with Persons with Disabilities,2019

2. Adequacy of power wheelchair control interfaces for persons with severe disabilities: A clinical survey;Fehr;J. Rehabil. Res. Dev.,2000

3. Devices for Mobility and Manipulation for People with Reduced Abilities (Rehabilitation Science in Practice Series);Bastos-Filho,2014

4. Electroencephalography (EEG)-Based Brain–Computer Interface (BCI): A 2-D Virtual Wheelchair Control Based on Event-Related Desynchronization/Synchronization and State Control

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3