Dynamic Modeling and Control of a Coupled Reforming/Combustor System for the Production of H2 via Hydrocarbon-Based Fuels

Author:

Ipsakis DimitrisORCID,Damartzis TheodorosORCID,Papadopoulou SimiraORCID,Voutetakis SpyrosORCID

Abstract

The present work aims to provide insights into the dynamic operation of a coupled reformer/combustion unit that can utilize a variety of saturated hydrocarbons (HCs) with 1–4 C atoms towards H2 production (along with CO2). Within this concept, a preselected HC-based feedstock enters a steam reforming reactor for the production of H2 via a series of catalytic reactions, whereas a sequential postprocessing unit (water gas shift reactor) is then utilized to increase H2 purity and minimize CO. The core unit of the overall system is the combustor that is coupled with the reformer reactor and continuously provides heat (a) for sustaining the prevailing endothermic reforming reactions and (b) for the process feed streams. The dynamic model as it is initially developed, consists of ordinary differential equations that capture the main physicochemical phenomena taking place at each subsystem (energy and mass balances) and is compared against available thermodynamic data (temperature and concentration). Further on, a distributed control scheme based on PID (Proportional–Integral–Derivative) controllers (each one tuned via Ziegler–Nichols/Z-N methodology) is applied and a set of case studies is formulated. The aim of the control scheme is to maintain the selected process-controlled variables within their predefined set-points, despite the emergence of sudden disturbances. It was revealed that the accurately tuned controllers lead to (a) a quick start-up operation, (b) minimum overshoot (especially regarding the sensitive reactor temperature), (c) zero offset from the desired operating set-points, and (d) quick settling during disturbance emergence.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3