High-Resolution Ultrasound Imaging Enabled by Random Interference and Joint Image Reconstruction

Author:

Ni PavelORCID,Lee Heung-No

Abstract

In ultrasound, wave interference is an undesirable effect that degrades the resolution of the images. We have recently shown that a wavefront of random interference can be used to reconstruct high-resolution ultrasound images. In this study, we further improve the resolution of interference-based ultrasound imaging by proposing a joint image reconstruction scheme. The proposed reconstruction scheme utilizes radio frequency (RF) signals from all elements of the sensor array in a joint optimization problem to directly reconstruct the final high-resolution image. By jointly processing array signals, we significantly improved the resolution of interference-based imaging. We compare the proposed joint reconstruction method with popular beamforming techniques and the previously proposed interference-based compound method. The simulation study suggests that, among the different reconstruction methods, the joint reconstruction method has the lowest mean-squared error (MSE), the best peak signal-to-noise ratio (PSNR), and the best signal-to-noise ratio (SNR). Similarly, the joint reconstruction method has an exceptional structural similarity index (SSIM) of 0.998. Experimental studies showed that the quality of images significantly improved when compared to other image reconstruction methods. Furthermore, we share our simulation codes as an open-source repository in support of reproducible research.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference44 articles.

1. Digital beamforming in ultrasound

2. Synthetic phased array image formation and restoration;Johnson;IEEE Int. Conf. Acoust. Speech Signal Process.,2002

3. Diagnostic Ultrasound Imaging: Inside Out;Szabo,2014

4. Resolution in ultrasound imaging

5. Upholding the diffraction limit in the focusing of light and sound

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3