Numerical Investigation of Performance, Combustion, and Emission Characteristics of Various Microalgae Biodiesel on CI Engine

Author:

Rehman Madeeha1ORCID,Kesharvani Sujeet1,Dwivedi Gaurav1ORCID

Affiliation:

1. Energy Centre, Maulana Azad National Institute of Technology, Bhopal 462003, India

Abstract

Biodiesel is being considered a possible alternative fuel due to its similarity with diesel and environmental benefits. This current work involves a numerical investigation of CI engine characteristics operating on D100 (diesel) and Dunaliella tertiolecta (DMB20), Scenedesmus obliquus (SOMB20), Scenedesmus dimorphu (SDMB20), and Chlorella protothecoides (CMB20) microalgae biodiesel blend. A diesel engine of 3.7 kW was used with variable compression ratios (CRs) (15.5, 16.5, 17.5, and 18.5) and constant speed (1500 rpm). Comparative analysis was performed for engine characteristics, including emission, combustion, and performance. Cylinder pressure, heat release rate, brake thermal efficiency, specific fuel consumption, particulate matter, oxide of nitrogen, carbon dioxide, etc., were evaluated using the blended fuel. The results show that the maximum cylinder pressure falls, SFC increases, and EGT and BTE were reduced for all blends at full load. In terms of emission characteristics, PM and smoke were lowered when compared to diesel, but a slight increment in NOx and CO2 was observed. Among all the blends, SOMB20 shows the most decrement in PM and smoke emissions by 14.16% and 11.6%, respectively, at CR 16.5. CMB20 shows a maximum increment in SFC by 3.22% at CR 17.5. A minimum reduction in CP and HRR was shown by DMB20 irrespective of CRs.

Publisher

MDPI AG

Subject

General Medicine

Reference102 articles.

1. Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives;Abomohra;Renew. Sustain. Energy Rev.,2016

2. Effect of simulated biogas on performance, combustion and emissions characteristics of a bio-diesel fueled diesel engine;Kalsi;Renew. Energy,2017

3. Carbonyl emissions in diesel and biodiesel exhaust;Arbilla;Atmos. Environ.,2008

4. A review on the energy production, consumption, and prospect of renewable energy in China;Chang;Renew. Sustain. Energy Rev.,2003

5. IEA (International Energy Agency) (2022, October 17). Available online: https://www.iea.org/reports/key-world-energy-statistics-2020.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3